O.P.Code: 23HS0832 H.T.No. **R23** SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech. II Year I Semester Regular Examinations February-2025 NUMERICAL AND STATISTICAL METHODS (Civil Engineering) Time: 3 Hours Max. Marks: 70 **PART-A** (Answer all the Ouestions $10 \times 2 = 20$ Marks) a Write the formula to find the root of an equation by Regula Falsi method. **CO1** L1 2M**b** Compare Jacoby and Gauss Seidel methods. **CO1** L1 2M **c** Write Newton's forward interpolation formulae. CO₂ L₁ 2M**d** Write the normal equations used in fitting a second degree polynomial. CO₂ L₂ 2Me Write Taylor formula for $y(x_1)$ to solve $y^1 = f(x, y)$ with $y(x_0) = y_0$. CO₃ L1 2M $\frac{dy}{dx} = y - x$; y(0) = 2, h = 0.2 then find the value of k_1 in R-K CO₃ L₂ 2Mmethod of fourth order. g Define Population and size of population. CO₄ L₁ 2Mh Define unbiased estimator. CO₄ L1 2MDefine Type I error and Type II error. **CO5** L1 2MDefine Null hypothesis and Alternate hypothesis. CO₅ L1 2M**PART-B** (Answer all Five Units $5 \times 10 = 50$ Marks) UNIT-I a Find a positive root of the equation $x^3 - x - 1 = 0$ by Bisection method. CO₁ **L2 5M b** Solve $x^3 - 2x - 5 = 0$ for a positive root by iteration method. CO₁ L2 **5M** 3 Solve the following system of equations by Jacobi method CO₁ **L2** 10M 2x - 3y + 20z = 25; 20x + y - 2z = 17; 3x + 20y - z = -18. UNIT-II a Using Newton's forward interpolation formula and the given table values, CO₂ L3 **5M** Obtain the value of f(x) when x=1.6. x 1 1.4 1.8 2.2 f(x)3.49 4.82 5.96 6.5 b Use Newton's backward interpolation formula to find f(32) given CO2 5M f(25)=0.2707, f(30)=0.3027, f(35)=0.3386, f(40)=0.37945 Fit a straight line y = ax + b for the following data CO₂ L2 10M 7 6 7 8 8 10 3 3 3 UNIT-III Tabulate y(0.1), y(0.2) using Taylor's series method given that $y^1 =$ 6 **10M** $v^2 + x$ and v(0) = 1

OR

Using Runge – Kutta method of fourth order, find y(0.1) and y(0.2)

given that $\frac{dy}{dx} = x + y$, y(0) = 1.

10M

CO₃

L3

8	a	What is more efficient unbiased estimator? Explain Breifly.	CO ₄	L2	5M
	b	A random samples of 400 items is found to have mean 82 and S.D of 18.	CO ₄	L2	5M
		Find the maximum error of estimation at 95% confidence interval. Find the			
		confidence limits for the mean if $x = 82$.			

OR

9	a A die was thrown 9000 times and of these 3220 yielded	a 3 or 4.Is this	CO ₄	L2	5M
	consistent with the hypothesis that the die was unbiased?				

b	In two large populations, there are 30%, and 25% respectively of fair	CO4					
	haired people. Is this difference likely to be hidden in samples of 1200 and						
	900 respectively from the two populations?						

UNIT-V

To examine the hypothesis that the husbands are more intelligent than the cos using the wives, an investigator took a sample of 10 couples and administered them a test which measures the I.Q. The results are as follows:

Husbands	117	105	97	105	123	109	86	78	103	107
Wives	106	98	87	104	116	95	90	69	108	85

Test the hypothesis with a reasonable test at the level of significant of 0.05 and also calculate F-test.

OR

From the following data, find whether there is any significant liking in the CO5 L5 10M habit of taking soft drinks among the categories of employees.

Soft Drinks	Clerks	Teachers	Officers
Pepsi	10	25	65
Thums up	15	30	65
Fanta	50	60	30

*** END ***

L2

5M

10M